EZM-9950 96×96 1/4 DIN Universal Input Programmable Timer \& Counter with Output Module System

- 6 digits Process (PV) and 6 digits Set (SV) Value Display
- Operation with 2 Set Value
- Reset , Pause and ChA-ChB Counting Inputs
- Configurable Counter/"Totalizer Counter", Batch Counter , Timer, Chronometer, Frequencymeter and Tachometer Functions
- Programmable Time Bases for Timer and Chronometer (Second, Minute , Hour)
- Operation with Automatic and Manual Reset
- Output Module System
- NPN/PNP Type Operation
- INC , DEC , INC / INC , INC / DEC , UP / DOWN , x1 / x2 / x4 Counting with Phase Shifting Property in Counter Function
- Multiplication Coefficient and Decimal Point Position
- Different Alarm Alternatives in Frequencymeter and Cycle Measuring Functions
- Absolute or Offset Operation in Counter Function
- RS-232 (standard) or RS-485 (optional) Serial Communication with Modbus ASCII or RTU Protocol

ABOUT INSTRUCTION MANUAL

Instruction manual of EZM-9950 Programmable Timer\&Counter consists of two main sections. Explanation of these sections are below. Also, there are other sections which include order information and technical specifications of the device. All titles and page numbers in instruction manual are in "CONTENTS" section. User can reach to any title with section number.

Installation:

In this section, physical dimensions of the device, panel mounting, electrical wiring, module mounting in the device, physical and electrical installation of the device to the system are explained.

Operation and Parameters:

In this section, user interface of the device, how to access to the parameters, description of parameters are explained.

Also in these sections, there are warnings to prevent serious injury while doing the physical and electrical mounting or using the device.

Explanation of the symbols which are used in these sections are given below.

This symbol is used for safety warnings. User must pay attention to these warnings.

This symbol is used to determine the dangerous situations as a result of an electric shock. User must pay attention to these warnings definitely.

This symbol is used to determine the important notes about functions and usage of the device.
CONTENTS
1.PREFACE Page 6
1.1 GENERAL SPECIFICATIONS
1.2 ORDERING INFORMATION
1.3 WARRANTY
1.4 MAINTENANCE
2.INSTALLATION Page 9
2.1 GENERAL DESCRIPTION
2.2 DIMENSIONS
2.3 PANEL CUT-OUT
2.4 ENVIRONMENTAL RATINGS
2.5 PANEL MOUNTING
2.6 INSTALLATION FIXING CLAMP
2.7 REMOVING FROM THE PANEL
2.8 SELECTION OF OPERATION FUNCTION AND INPUT TYPE WITH DIP
SWITCH
3.ELECTRICAL WIRINGS Page 15
3.1 TERMINAL LAYOUT AND CONNECTION INSTRUCTION
3.2 ELECTRICAL WIRING DIAGRAM
3.3 CONNECTION OF DEVICE SUPPLY VOLTAGE INPUT
3.4 COUNTING INPUT CONNECTION
3.4.1 PROXIMITY \& SWITCH CONNECTION
3.4.2 INCREMENTAL ENCODER \& SWITCH CONNECTION
3.4.3 SWITCH CONNECTION
3.5 GALVANIC ISOLATION TEST VALUES OF EZM-9950 PROGRAMMABLE TIMER\&COUNTER AND OUTPUT MODULES
4.DEFINITIONS AND SPECIFICATIONS OF OUTPUT MODULES Page 22
4.1 EMO-900 RELAY OUTPUT MODULE
4.2 EMO-910 SSR DRIVER MODULE
4.3 EMO-920 DIGITAL (TRANSISTOR) OUTPUT MODULE
4.4 INSTALLING AND PULLING OUT OUTPUT MODULES
4.5 TO STICK OUTPUT MODULES' LABELS TO THE DEVICE
5.CONNECTION TERMINALS OF OUTPUT MODULES AND CONNECTION WIRING Page 27
5.1 EMO-900 RELAY OUTPUT MODULE CONNECTION
5.2 EMO-910 SSR DRIVER MODULE CONNECTION
5.3 EMO-920 DIGITAL (TRANSISTOR) OUTPUT MODULE CONNECTION
6.CONNECTIONS FOR RS-232 / RS-485 SERIAL COMMUNICATION Page 29
6.1 CABLE CONNECTION BETWEEN RS-232 TERMINAL OF THE DEVICE AND PC
6.2 CONNECTION FOR RS-485 SERIAL COMMUNICATION
6.3 INSTALLING RS-232 / RS-485 SERIAL COMMUNICATION MODULES TO THE DEVICE
7.DEFINITION OF FRONT PANEL AND ACCESSING TO THE SET PARAMETERS Page 337.1 DEFINITION OF FRONT PANEL7.2 POWER ON OBSERVATION OF EZM - 9950 PROGRAMMABLE TIMER \&COUNTER AND SOFTWARE REVISION ON THE DISPLAY
7.3 ADJUSTMENT OF SET1 AND SET2 VALUES
7.4 RESETTING COUNT VALUE AND OBSERVING TOTAL COUNT VALUE IN COUNTER / "TOTALIZER COUNTER" FUNCTION
7.5 COUNTER / "TOTALIZER COUNTER" PARAMETERS
7.5.1 COUNTER / "TOTALIZER COUNTER" APPLICATIONS EXAMPLES
7.6 BATCH COUNTER PARAMETERS
7.6.1 BATCH COUNTER APPLICATIONS EXAMPLES
7.7 TIME RELAY PARAMETERS
7.7.1 TIMER APPLICATIONS EXAMPLES
7.8 FREQUENCYMETER / TACHOMETER PARAMETERS
7.8.1 FREQUENCYMETER / TACHOMETER APPLICATIONS EXAMPLES
7.9 CHRONOMETER PARAMETERS
7.9.1 CHRONOMETER APPLICATIONS EXAMPLES
7.10 ACCESSING TO THE PROGRAM PARAMETERS
8.PROGRAM PARAMETERS Page 68
9.FAILURE MESSAGES IN EZM-9950 PROGRAMMABLE TIMER \& COUNTER Page 101
10.SPECIFICATIONS Page 103

Manufacturer Company Name : Emko Elektronik A.S.
Manufacturer Company Address: DOSAB, Karanfil Sokak, No:6, 16369 Bursa, Turkiye
The manufacturer hereby declares that the product conforms to the following standards and conditions.

Product Name : Programmable Timer \& Counter
Model Number : EZM-9950
Type Number : EZM-9950
Product Category : Electrical equipment for measurement, control and laboratory use

Conforms to the following directives:
73 / 23 / EEC The Low Voltage Directive as amended by 93 / 68 / EEC
89 / 336 / EEC The Electromagnetic Compatibility Directive

Has been designed and manufactured according to the following specifications EN 61000-6-4:2001 EMC Generic Emission Standard for the Industrial Environment EN 61000-6-2:2001 EMC Generic Immunity Standard for the Industrial Environment

EN 61010-1:2001 Safety Requirements for electrical equipment for measurement, control and laboratory use

1.Preface

EZM Series Programmable Timer \& Counter can be used in package machines, production and quality control rollers, in cutting and processing machine of glass, plastic, marble, sheet, iron, fabric all measuring and controlling of dimension, count, total count, speed, cycle, productivity, time and can be adapted easily to all mechanical construction and automation system. They can be used in many application with their control outputs, serial communication unit and output modules.

Some application fields which they are used are below:

Application Fields

Glass
Plastic
Marble
Sheet iron
Automative
Machine production industries
1.1 General Specifications

1.2 Ordering Information

A Supply Voltage

1	$100-240 \mathrm{~V} \sim(-15 \% ;+10 \%) 50 / 60 \mathrm{~Hz}$
2	$24 \mathrm{~V} \sim(-15 \% ;+10 \%) 50 / 60 \mathrm{~Hz} \quad 24 \mathrm{~V}=-(-15 \% ;+10 \%)$
9	Customer $($ Maximum $240 \mathrm{~V} \sim(-15 \% ;+10 \%)) 50 / 60 \mathrm{~Hz}$

D	Serial Communication	Product Code
0	None	-
1	RS-232	EMC-900
2	RS-485	EMC-910

FG	Module-1	Product Code
00	None	-
01	Relay Output Module(5A@250V~Resistive Load)	EMO-900
02	SSR Driver Output Module	EMO-910
03	Digital(Transistor) Output Module	EMO-920

HI	Module-2	Product Code
00	None	-
01	Relay Output Module(5A@250V~Resistive Load)	EMO-900
02	SSR Driver Output Module	EMO-910
03	Digital(Transistor) Output Module	EMO-920

\mathbf{U}	Function of Device
0	Counter/ "Totalizer Counter"
1	Batch Counter
2	Timer
3	Frequencymeter and Tachometer
4	Chronometer

\mathbf{V}	Input Type
0	NPN
1	PNP

All order information of EZM-9950 Programmable Timer\&Counter are given on the table at left. User may form appropriate device configuration from information and codes that at the table and convert it to the ordering codes.

Firstly, supply voltage then output modules and other specifications must be determined. Please fill the order code blanks according to your needs.

Please contact us, if your needs are out of the standards.

~Symbol means Vac, =-Symbol means Vdc
\approx Symbol means Vac and Vdc
1.3 Warranty

EMKO Elektronik warrants that the equipment delivered is free from defects in material and workmanship. This warranty is provided for a period of two years. The warranty period starts from the delivery date. This warranty is in force if duty and responsibilities which are determined in warranty document and instruction manual performs by the customer completely.

1.4 Maintenance

Repairs should only be performed by trained and specialized personnel. Cut power to the device before accessing internal parts.
Do not clean the case with hydrocarbon-based solvents (Petrol, Trichlorethylene etc.). Use of these solvents can reduce the mechanical reliability of the device. Use a cloth dampened in ethyl alcohol or water to clean the external plastic case.

2.Installation

Before beginning installation of this product, please read the instruction manual and warnings below carefully.

In package,

- One piece unit
-Two pieces mounting clamps
-One piece instruction manual
A visual inspection of this product for possible damage occured during shipment is recommended before installation. It is your responsibility to ensure that qualified mechanical and electrical technicians install this product.

If there is danger of serious accident resulting from a failure or defect in this unit, power off the system and separate the electrical connection of the device from the system.

The unit is normally supplied without a power switch or a fuse. Use power switch and fuse as required.

Be sure to use the rated power supply voltage to protect the unit against damage and to prevent failure.

Keep the power off until all of the wiring is completed so that electric shock and trouble with the unit can be prevented.

Never attempt to disassemble, modify or repair this unit. Tampering with the unit may results in malfunction, electric shock or fire.

Do not use the unit in combustible or explosive gaseous atmospheres.
During the equipment is putted in hole on the metal panel while mechanical installation some metal burrs can cause injury on hands, you must be careful.

Montage of the product on a system must be done with it's fixing clamps. Do not do the montage of the device with inappropriate fixing clamp. Be sure that device will not fall while doing the montage.

It is your responsibility if this equipment is used in a manner not specified in this instruction manual.

2.2 Dimensions

Operating Conditions

Max. Operating Humidity : 90\% Rh (non-condensing)

Altitude
: Up to 2000 m .

Forbidden Conditions:
Corrosive atmosphere
Explosive atmosphere
Home applications (The unit is only for industrial applications)

2.5 Panel Mounting

1-Before mounting the device in your panel, make sure that the cut-out is the right size.

2-Check front panel gasket position

3-Insert the device through the cut-out. If the mounting clamps are on the unit, put out them before inserting the unit to the panel.

During installation into a metal panel, care should be taken to avoid injury from metal burrs which might be present. The equipment can loosen from vibration and become dislodged if installation parts are not properly tightened. These precautions for the safety of the person who does the panel mounting.

The unit is designed for panel mounting.

1-Insert the unit in the panel cut-out from the front side.

2- Insert the mounting clamps to the holes that located top and bottom sides of device and screw up the fixing screws until the unit completely immobile within the panel

Montage of the unit to a system must be done with it's own fixing clamps. Do not do the montage of the device with inappropriate fixing clamps. Be sure that device will not fall while doing the montage.

2.7 Removing from the Panel

Before starting to remove the unit from panel, power off the unit and the related system.

1-Loosen the screws.
2-Pull mounting clamps from top and bottom fixing sockets.

3-Pull the unit through the front side of the panel

Operation function and input type (NPN / PNP) can be changed by DIP switch on the device.

DIP Switch is under cover and cover is on top side of the device
Function Selection

Input Type Selection

OFF ON	
$\square \square$	NPN

OFF ON	
$\square \square$	PNP

You must ensure that the device is correctly configured for your application. Incorrect configuration could result in damage to the process being controlled, and/or personal injury. It is your responsibility, as the installer, to ensure that the configuration is correct.
Parameters of the device has factory default values. These parameters must be set according to the system's needs.

Only qualified personnel and technicians should work on this equipment. This equipment contains internal circuits with voltage dangerous to human life. There is severe danger for human life in the case of unauthorized intervention.

Be sure to use the rated power supply voltage to protect the unit against damage and to prevent failure.

Keep the power off until all of the wiring is completed so that electric shock and trouble with the unit can be prevented.

3.1 Terminal Layout and Connection Instructions

0.5 Nm

6 mm / 0.236 inch Wire Size:
18 AWG / 1 mm ${ }^{2}$ Solid/Stranded

24 screws terminal M3
Optional connections

Empty terminals

Torque 0.5 Nm

Screw driver $0.8 \times 3 \mathrm{~mm}$

Electrical wiring of the device must be the same as 'Electrical Wiring Diagram' below to prevent damage to the process being controlled and personnel injury.

3.3 Connection of Device Supply Voltage Input

Connection of Universal Supply Voltage Input

Supply Voltage

$$
\begin{gathered}
100-240 \underset{50 / 60 \mathrm{~Hz}}{\sim}(-15 \% ;+10 \%) \\
\hline
\end{gathered}
$$

Connection of Low Voltage $24 \mathrm{~V} \sim$ Supply Voltage Input

Supply Voltage

$$
\begin{gathered}
24 \mathrm{~V} \sim(-15 \% ;+10 \%) 50 / 60 \mathrm{~Hz} \\
\text { or } 24 \mathrm{~V}=-\mathrm{-}(-15 \% ;+10 \%)
\end{gathered}
$$

Note-1:
There is internal $33 R \Omega$ fusible flameproof resistor in $100-240 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$
There is internal $4 R 7 \Omega$ fusible flameproof resistor in $24 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$ and $24 \mathrm{~V}=-$
Note-2 :" L " is " + ", " N " is " - " for $24 \mathrm{~V}=-$ supply voltage
Note-3 : External fuse is recommended.

Make sure that the power supply voltage is the same indicated on the instrument.
Switch on the power supply only after that all the electrical connections have been completed.

Supply voltage range must be determined in order. While installing the unit, supply voltage range must be controlled and appropriate supply voltage must be applied to the unit. Controlling prevents damages in unit and system and possible accidents as a result of incorrect supply voltage.
There is no power supply switch on the device. So a power supply switch must be added to the supply voltage input. In accordance with the safety regulations, the power supply switch shall bring the identification of the relevant instrument.Power supply switch shall be easily accessible by the user.
Power switch must be two poled for seperating phase and neutral. On/Off condition of power switch is very important in electrical connection. On/Off condition of power switch must be signed for preventing the wrong connection.

If an external fuse is used, it must be on phase connection in ~supply input.
If an external fuse is used, it must be on (+) line connection in =- supply input.
The instrument is protected with an internal fuse (Please refer to Note1 for information). In case of failure it is suggested to return the instrument to the manufacturer for repair.

3.4.1 Proximity \& Switch Connection

DIP SWITCH ADJUSTMENT : NPN

NOTE-1 : Auxiliary power supply for external transmitter
$12 \mathrm{~V}= \pm 10 \%, 50 \mathrm{~mA}$ maximum with short circuit protection
NOTE-2 : Reset and Pause inputs have protection time against electrical contact debounce. Protection time can be set with $\left.\operatorname{Pro-} \mathrm{P}_{4}\right]$ parameter. ($2-250 \mathrm{msec}$.)

DIP SWITCH ADJUSTMENT : PNP

DIP SWITCH ADJUSTMENT : NPN

NOTE-1 : Auxiliary power supply for external transmitter
$12 \mathrm{~V}= \pm \mathbf{1 0} \%, 50 \mathrm{~mA}$ maximum short circuit protection
NOTE-2 : Reset and Pause inputs have protection time against electrical contact debounce. Protection time can be set with $P_{r o-}-{ }^{4}$ parameter. ($2-250 \mathrm{msec}$.)

DIP SWITCH ADJUSTMENT : NPN

NOTE-1 : Auxiliary power supply for external transmitter $12 \mathrm{~V}= \pm \mathbf{1 0 \%}, 50 \mathrm{~mA}$ maximum short circuit protection

NOTE-2 : Reset and Pause inputs have protection time against electrical contact debounce. Protection time can be set with Pro-04 parameter. (2-250 msec.)
3.5 Galvanic Isolation Test Results of EZM-9950 Programmable Timer \& Counter and Output Modules

4. Definitions and Specifications of Output Modules

EZM-9950 programmable Timer \&Counter is a modular product which is designed to operate with additional output units which user may need.

Two output modules can be plugged in the equipment by the user. User may configure the product for different applications according to the system requirements with the output modules which are described in this section.

Dimensions of Output Modules

4.1 EMO-900 Relay Output Module

EMO-900 Relay output module can be plugged in Module-1 or Module-2 socket to be used in applications that relay output is necessary
Specifications of EMO-900 Relay Output Module
Output :5A@250V~, Single Open / Close Contact
Dimensions : $18 \times 75.2 \times 41.4 \mathrm{~mm}$
Electrical Life : 100.000 operation (Full Load)

Applications of EMO-900 Relay Output Module

It can be used for programmable different alarm functions as control or alarm output.

4.2 EMO-910 SSR Driver Module

EMO-910 SSR Driver Module can be plugged in Module-1 or Module-2 socket to be used in applications that SSR driver output is necessary

Specification of EMO-910 SSR Driver Module
Output : Maximum $20 \mathrm{~mA}, 15-18 \mathrm{~V}= \pm 10 \%$, isolated
Dimensions: $18 \times 75.2 \times 41.4 \mathrm{~mm}$

Applications of EMO-910 SSR Driver Module

It can be used for programmable different alarm functions as control or alarm output.
Note 1: SSR Driver Module must be preferred instead of relay output module in applications with short output period because of limited life of their relay contact (number of open/close events).

4.3 EMO-920 Digital (Transistor) Output Module

EMO-920 Digital (Transistor) Output Module can be plugged in Module-1 or Module-2 socket to be used in applications that digital output is necessary

Specifications of EMO-920 Digital (Transistor) Output Module
Output : Maximum $40 \mathrm{~mA}, 15-18 \mathrm{~V}= \pm 10 \%$, isolated
Dimensions: $18 \times 75.2 \times 41.4 \mathrm{~mm}$
Applications of EMO-920 Digital (Transistor) Output Module
It can be used for programmable different alarm functions as control or alarm output.

First, detach all cable connections from the device and uninstall it from the panel.

Pull the cover case with your other hand from front panel to rear side.

Pull out the cover case from the device

Slide output modules into socket.
Pull out the module from it's socket, instead of this module install the new one or other module user wants to use.

Replace the cover case by taking care of the terminal numbers should be at right position.

After adding or changing modules to the unit, these changes must be taken into consideration while mounting of the unit to the system. If mounting is incorrect, it can cause accidents to harm system, operator or person who does the mounting. Responsibility of these kind of harmful events belongs to the user.

4.5 To Stick Output Modules' Labels to the Equipment

Every module which is plugged in Module-1 or Module-2 socket has labels' for showing the relation between connection terminal and the device. These labels are attached to empty attachment places which are separated for Module-1 and Module-2 on the device. Labels for all modules and attachment places are shown below.

Label which is plugged in Module-2 socket, describes module termination connection is attached to this area.

Label which is plugged in Module-1 socket, describes module termination connection is attached to this area.

LABELS FOR OUTPUT MODULES

Label for EMO-900 Relay Output Module

Label for EMO-910 SSR Driver Module

Label for EMO-920 Digital (Transistor) Output Module

Example : If user installs EMO-900 Relay Output Module to Module-1 socket, EMO-910 SSR Output Module to Module-2 socket and attach the appropriate labels on the device view will be like below:

5.Connection Terminals of Output Modules and Connection Wirings

Module-1 / Module-2 Optional Output Modules

5.1 EMO-900 Relay Output Module Connection

Fuses must be selected according to the applications.

Fuses must be selected according to the applications.

5.3 EMO-920 Digital (Transistor) Output Module Connection

RS-232 Terminal Definitions

RS-485 Terminal Definitions

EZM-9950

PC (Personal Computer) 9 Pin DCON connection

PC (Personal Computer)
EZM-9950
25 Pin DCON connection

6.2 Connection for RS-485 Serial Communication

PC(Personal Computer)

MASTER

32 terminal can be connected in RS485 line

Rt resistor $=120 \Omega$
For communication connection
Twisted Pair cable must be used
Cable lenght can be maximum 1000 meters in 9600 baud rate.

When baud rate increases, cable lenght must decrease.

RS-232 \Rightarrow RS-485
Convertor

RS-232
Connection Cable

SLAVE-1

SLAVE-N

6.3 Installing RS-232 / RS-485 Serial Communication Modules to the Device

Pull the cover case with your hand through rear side as explained in "Installing and Pulling Out Output Modules" section. Pull the modules in Module-1 and Module-2 socket through rear side. Separate supply card which is at the bottom of the equipment by lifting the locking tabs located on front panel. Pay attention to cable connection between top and bottom cards. Damages in this cable makes the equipment not to work.

RS-232 or RS-485 module is plugged into socket signed as A and B. Hold the equipment to be it's front panel is on your right, communication socket is on your left and module connection socket with 5 terminals on above. Plug in module connection socket with 5 terminals to the socket on Top Card. Do the same things for terminal socket in bottom card and connection socket with 3 terminals. Plug in bottom card to the place in front panel. Install the modules which are pulled out to Module-1 and Module-2 socket. Replace the cover case by taking care of the terminal numbers should be at right position.

7.1 Definition of Front Panel

NOTE-2 INCREMENT Button:
It is used for increasing the value which is selected with shifting button.
(The value can be adjusted with increment button from 0 to 9)

NOTE-1 : Total count value is 12 digits in Counter/ "Totalizer Counter" function
NOTE-2 : In Counter / "Totalizer Counter" function if SET1 operation form selection parameter $P_{r o-2}$ is $0 D D O D$, then SET1 can be negative. While most significant digit (6 th digit) of SET1 value is changed from 0 to 9 with increment button, after 9, "-" character is shown. If when "-" character is on the most significant digit (6 th digit) of SET1 value and Enter button is pressed, SET1 value becomes negative.

7.2 Power On Observation of EZM - 9950 Programmable Timer \& Counter and Software Revision on the Display

When power is applied to the device, software revision number of the controller is momentarily illuminated on actual value display. Then operation screen is observed.

When power on, view of the screen is shown below:

Software Revision

Operation Screen is shown

Changing SET2 value in Counter/"Totalizer Counter" functions

When shift button is pressed, 6th digit of SET2 value starts to flash.

Save the value as SET2 value by pressing Enter button.

(i)
If Pro-28 Reset and Set Protection parameter is 000002 , 000003 or 000005 then SET2 value can not be changed. For details, refer to parameters section.

Save the value as SET1 value by pressing Enter button.

(i)If Pro -2B Reset and Set Protection parameter is 000002 , 000003 or 000054 , then SET1 value can not be changed. For details, refer to parameters section.

7.4 Resetting Count Value and Observing Total Count Value in COUNTER / "TOTALIZER COUNTER" Function

Count value is reset and added to the total count value when RESET button is pressed.

Operation Screen

After count value is reset, press TOTAL button.

Continue to press TOTAL button. When user stops pressing Total button, operation screen is shown.

If RESET button is pressed while TOTAL button is pressing, total count value is reset.

Total count value is 12 digits.
When user stops pressing the buttons, operation screen is shown.

Note-1: If manual reset is applied when counting direction parameter Pro-19 Is DODED difference between SET2 value and value on the screen is added to the total count value

Operation Screen

Note-2: Becoming zero of count value is for if counting direction parameter Pro -19 Is 00000 D , if counting direction parameter Pro-19 Is 00000 count value becomes equal to SET2 value

If Pro-2B Reset and Set Protection parameter is 000001 or 000003 then total count value can not be reset. For details, refer to parameters section.

RESET operation can be realized by Reset button or applying signal to the RESET input. These two operations are named MANUAL RESET in parameters section. At the end of the MANUAL RESET operation, if counting direction parameter Pro-19 is 000000 then count value becomes 000000 . If counting direction parameter Pra-19 is DODND then count value becomes equal to SET2 value .

7.5 COUNTER / "TOTALIZER COUNTER" Parameters

 SET1SET value for Output-1. Control of the Output-1 is done according to this value. It can be adjusted from 00000 D to 999998
If SET1 operation form selection parameter $P r o-2]$ is selected operation with offset 00000 i, it can be adjusted from -99393 to 999998

SET2

SET value for Output-2. Control of the Output-2 is done according to this value. It can be adjusted from 000000 to 999998

Pro-0|

000000
$00000:$
000002
000003
000004
000005
000006
000007
Pro-04
Pulse Time of Ch-A, Ch-B, Reset and Pause Inputs
It is used to protect against the electrical contact debounce or the signal that is less than the determined pulse time.
It can be adjusted from 000000 to 000250 msec . If it's adjusted to 0 ODOD) then there is no time protection for $\mathrm{Ch}-\mathrm{A}$ and $\mathrm{Ch}-\mathrm{B}$. If the parameter 000000 then there is no time protection for Ch-A and Ch-B. If the parameter times are accepted as 2 msec .

Pro-05

000000
Manual Reset-1. Device continues to count till manual reset is applied. Output-2 pulse time Pro-17 is not considered.

000001

Input Types and Functions

Upcount on rising edge of Ch-Ainput(INC)
Downcount on rising edge of Ch-Ainput(DEC)
Upcount on rising edge of Ch-A input and downcount on rising edge of Ch-B input (INC / DEC)
Upcount on rising edge of Ch-A and Ch-B inputs (INC / INC)
Upcount on rising edge of Ch-A input when Ch-B is at 0 , downcount on rising edge of Ch-A input when Ch-B is at 1.(UP/DOWN)
x 1 phase shifting (for incremental encoders)
x2 phase shifting (for incremental encoders)
$x 4$ phase shifting (for incremental encoders)

Output Functions

Manual Reset-2. Device continues to count till count value reaches to SET2 value. For starting to count again, manual reset input must be active. Output2 pulse time $\operatorname{PrO^{-}} 17$ is not considered.
OOODCD Manual Reset-3. It operates like Manual Reset-1. Only difference, output-2 pulse time Pro-17] is considered.

In operation with Manual or Automatic Reset, at the end of the reset operation, if counting direction parameter $P r 0^{-19}$ is 000000 ($0 \Rightarrow P$), count value becomes 000000 . If Pro- 19 is $000 \mathrm{DD}(P \Rightarrow 0)$, count value becomes SET2.

For details on parameters, refer to Section 8 (Program Parameters).

000003 Automatic Reset-1. Count value is reset when it reaches to SET2 value (For $0 \Rightarrow P)$. Count value is added to total count value and device starts to count from 000000
000004
Automatic Reset-2. Counting is stopped when count value reaches to SET2 value. Count value becomes zero (for $0 \Rightarrow P$) at the end of output-2 pulse time Pro-17 And count value is added to total count value. Device starts to count from 000000
OTODS Automatic Reset-3. Count value becomes zero (for $0 \Rightarrow P$) when it reaches to SET2 value and count value is added to total count value. Device starts to count from 000000 . Meanwhile, SET2 value is shown in actual value display, count value is shown at the end of output-2 pulse time Pro-17

00055 Automatic Reset-4. Counting is continued when count value reaches to SET2 value.Count value becomes zero (for $0 \Rightarrow P$) at the end of Output-2 pulse Pro-17] time and it is added to total count value. Device starts to count from OOOOOD
DODOD Automatic Reset-5. Counting is continued till manual reset is active. Output1 and Output-2 pulse times (Pro-16 and $P_{r a}-17$) are not considered. It is preferred if upcount and downcount are done at the same time.

In operation with Manual or Automatic Reset, at the end of the reset operation, if counting direction parameter $P_{r o-19}$ is 000000 ($0 \Rightarrow P$), count value becomes 000000 . If Pro -19 is 00000 I $(P \Rightarrow 0)$, count value becomes SET2.

Pro-14
 757 $7 \square$
 00001
 Pro-15
 그그
 BGB7B

Operation form for Output-1
Output -1 Normally non-energised
Output -1 Normally energised
Operation form for Output-2
Output -2 Normally non-energised
Output -2 Normally energised
Output-1 Pulse Time
Energising time for Output-1. It can be adjusted from 000000 to 0099.99 If it is 000000 , then it operates indefinitely.

Output-2 Pulse Time
Energising time for Output-2. It can be adjusted from 000000 to 009993 If it is 000000 , then it operates indefinitely.

Selection of counting direction
000000
Upcount $(0 \Rightarrow$ Preset $)$
DAD
Downcount(Preset $\Rightarrow 0$)
Pro－20 Point Position for display
000000 No point
ODNDO Between first and second digits
Oロロロロㄹ Between second and third digits
000003 Between third and fourth digits
000004 Between fourth and fifth digits
Pro－z！ Saving Count Value（Power down back－up）
 Count value is saved to memory when power is off and restored on power up．
000001 Count value is not saved to memory when power is off
ローローロロ Selection of SET1 Operation Form
000000 Operating without offset．It can be adjusted from 00000 D to 999998
00000 ： Operating with offset．SET1 can be adjusted SET1＝SET2＋SET1
Pro－23 Slave AddressDevice address for serial communication bus．It can be adjusted from 00000 to 002247
Praーム4 Selection of Modbus Protocol TypeODODOD MODBUSASCII communication protocol is selected．
000001 MODBUS RTU communication protocol is selected
Pro－25 Parity
ONODOD No parity
OUODO O Odd parity
000002 Even parity
Pro－25 Baud Rate
OOUNDG 1200 Baud Rate
ODODO 2400 Baud RateODOLDC 4800 Baud RateOAODOU 19200 Baud Rate

Pro-27
Stop Bit
DODO 1 Stop Bit
DODO 2 Stop Bits
$\square\ulcorner\square-\beth \square$ Reset and Set protection (Accessing from front panel)
OUODS There is no Reset and Set protection
DOD 1 Reset Button protection is active
OODOD2 SET1 and SET2 protection is active
ODODC3 Reset Button, SET1 and SET2 protection is active (Full protection)
ODODOU SET1 protection is active
ODODO5 SET2 protection is active
Pro-30
Multiplication Coefficient
Count value is multiplied with this value. It can be adjusted from 0000 Dt to. 999999 . If it is 010000 , it has no effect.

ProPS
Program Password
It is used for accessing to the program parameters.
It can be adjusted from 000000 to 009393 . If it is 000000 , there is no password protection.

7.5.1 COUNTER / "TOTALIZER COUNTER" Applications Examples

EXAMPLE-1 :
There is a production band like in diagram below. Bottles are perceived by a proximity sensor in Ch-A. If
Pro-0 $=000000 ; \operatorname{Pro} 30=010000 ;$

Counting the bottles is done with upcount by using only ChA input. When user reset count value with manual reset, count value is added to total count value.

EXAMPLE-2:

There is a cloth workbench. An encoder with 100 pulse is connected to this system. The encoder is connected to $\mathrm{Ch}-\mathrm{A}$ and $\mathrm{Ch}-\mathrm{B}$ inputs.

$$
\begin{aligned}
& \text { Pra-01 }=000005 ; \text { Pra-04 }=000000 ; \\
& \text { Pro-19 = 000000; Pro-30 } 0 \text { 10000; }
\end{aligned}
$$

You wish to display 200 in actual value display for a drive pulley going forward of 100 cm . If you want to display cloth length in actual value display, you must adjust coefficient parameter Pro-30 like in below:

Pro-30 $=\frac{\text { Measured cloth length }}{\text { Value on the screen }}$
Pro-30 Coefficient must be $=100 / 200=" 00.5000 "$
After adjustment of coefficient, calculated value is cloth length and you can see this value in actual value display.

If you want to display the speed of the drive pulley as dm instead of $\mathrm{cmPro-20}$ point position for display parameter must be 02000 , if m instead of cm , this parameter must be 000002

EXAMPLE-3:

There is a system like in the diagram below. Ch-Ais used for measuring the flow.
If
Pro-D $=000000$ Pro-30 $=010000$
In this application, total amount of flow is measured. If it is
 known how many pulses are being sent for each liter from the sensor in Ch-A we can measure the desired value by changing the Pro-30 parameter.
For example if sensor gives 10 pulses for 1 liter fluid flow and we want to observe the liquid quantity as liter, coefficient parameter Pro-30 parameter value must be Pro-30 $=1 \mathrm{Lt} / 10$ pulse $=$ "00.1000"

EXAMPLE-4:

There is a cutting unit below. 100-pulse encoder is connected to $\mathrm{Ch}-\mathrm{A}$ and $\mathrm{Ch}-\mathrm{B}$ inputs.

If Pro-D $=000005 ;$ Pro-04 $=$ DODODD $;$ Pro- $19=$ DODODD ;
Pro-22=00000i And Pro-30 = 010000 ;
If Pro-22] parameter is 00000 , then device operates with offset. If SET1 is negative value, then Output-1 will be active in SET2-SET1. This option offers us to solve wrong cutting problem on the speedy mechanic, by reaching slowly to the target.
(SET1=SET1 + SET2)
For example ;if SET1 $=-000100 ;$ SET2 $=000500$; then SET1 $=-100+500=400$

If more sensitivity is needed, Pra-Di parameter can be selected 000005 or 000007

For example, while $x 1$ phase shifting counting is performed in a system with a cutting unit as shown above, a 100-pulse encoder is connected to Ch-A and Ch-B inputs. If the system is advanced 100 cm for 50 encoder pulses, so it is advanced 2 cm with 1 encoder pulse.
When $\times 2$ phase shifting counting is performed, for the system is being advanced $100 \mathrm{~cm}, 100$ encoder pulses are needed. In this case, the system is advanced 1 cm with 1 encoder pulse.
When $\times 4$ phase shifting counting is performed, for the system is being advanced $100 \mathrm{~cm}, 200$ encoder pulses are needed. In this case, the system is advanced 0.5 cm with 1 encoder pulse.

Sensitivity of the system is changed from 2 cm to 0.5 cm .

EXAMPLE-5:

There are two sensors in Ch-A and Ch-B inputs for determining the amount of the liguid in Channel-A and Channel-B. Multiplication coefficient parameter Pra-3D is adjusted to converts the pulses to observe the amount of the liquid exactly in the actual value screen. (For example liter)
For observing total amount of liquid Pro- 1 must be 00003

If the tank is filled with liguid 20 liters from Channel-1 and 40 liters from Channel-2, 60 liters is observed in actual value screen.

If Output-1 controls the Channel-1, Output-2 controls the Channel-2, SET1 is 20 and SET2 is 40, then it is possible to close the system after filling the tank with 20 liters from Channel-1 and 40 liters from Channel-2

SET1

SET value for Output-1. Control of the Output-1 is done according to this value. It can be adjusted from 000000 to 999938
SET2
SET value for Output-2. Control of the Output-2 is done according to this value. It can be adjusted from 000000 to 939998

000000 000001 000002

000003
000004
000005
000006
000007

Input Types and Functions

Upcount on rising edge of input Ch-A (INC)
Downcount on rising edge of input $\mathrm{Ch}-\mathrm{A}(\mathrm{DEC})$
Upcount on rising edge of input Ch-A and downcount on rising edge of input Ch-B (INC/DEC)
Upcount on rising edge of input Ch-A and Ch-B (INC/INC)
Upcount on rising edge of Ch-A input when Ch-B is at 0 , downcount on rising edge of Ch-A input when $\mathrm{Ch}-\mathrm{B}$ is at 1.(UP/DOWN)
x 1 phase shifting (for incremental encoders)
$x 2$ phase shifting (for incremental encoders)
$x 4$ phase shifting (for incremental encoders)

Pro-04

Pulse Time of Ch-A, Ch-B, Reset and Pause Inputs

It is used to protect against the electrical contact debounce or the signal that is less than the determined pulse time.
It can be adjusted from 000000 to 000250 msec . If it's adjusted to 000000 then there is no time protection for $\mathrm{Ch}-\mathrm{A}$ and $\mathrm{Ch}-\mathrm{B}$. If the parameter value is adjusted 000000 or 00000 i then Reset and Pause protection times are accepted as 2 msec .

When SET1 value is shown on the screen if MANUAL RESET is applied, batch count value, when SET2 value is shown on the screen if MANUAL RESET is applied, normal count value becomes zero.
In operation with Manual or Automatic Reset, at the end of the reset operation, if counting direction parameter $P_{r o}-19$ is $000000 ~(~ 0 \Rightarrow P)$, count value becomes 000000 . If $P_{r o-19}$ is 02000 ($(P \Rightarrow 0)$, count value becomes SET2. For both conditions ($0 \Rightarrow P$ or $P \Rightarrow 0$), batch count value becomes 000000

For details on parameters, refer to Section 8 (Program Parameters).

Pro－05
 Output Functions

OTODO Manual Reset．BATCH counting operation continues until manual reset input is active．

Automatic Reset．BATCH counting operation continues until Batch count value reaches to SET1 value．When Batch count value is equal to SET1 value，Batch count value becomes zero（for $0 \Rightarrow P$ ）and device starts to count again．

$P_{r}-14$

Operation Form of Output－1
000000
$00000:$
Output－1 Normally non－energised
Output－1 Normally energised

Operation Form of Output－2
000000
$00000:$
Pro－16
Output－ 2 Normally non－energised
Output－ 2 Normally energised
Output－1 Pulse Time
Energising time for Output－1．It can be adjusted from ODODOD to 009993 If it is 000000 ，then it operates indefinitely．

Output－2 Pulse Time
Energising time for Output－2．It can be adjusted from OODODO to 009999 If it is 000000 ，then it operates indefinitely．

Pro－19

Selection of counting direction
000000
Upcount（ $0 \Rightarrow$ Preset ）
000001
Downcount（Preset $\Rightarrow 0$ ）

Pro－20

Point Position for display
금ㅁ
No point
00000
Between first and second digits
ODODC Between second and third digits
ODOD，B Between third and fourth digits
ONOU4 Between fourth and fifth digits

ロrローム
DOODAD
［0000：
Pro－23

Saving Count Value（Power down back－up）

Count value is saved power is off and restored on power up．
Count value is not saved to memory when power is off
Slave Address
Device address for serial communication bus．
It can be adjusted from 000001 to 000247
ロrロームப Selection of Modbus Protocol Type
000005 MODBUSASCII communication protocol is selected．
000001 MODBUS RTU communication protocol is selected
Pro－25 Parity
O～OADO No parity
$00000:$ Odd parity
000002 Even parity
Pro－26 Baud Rate
000000 1200 Baud Rate
$00000:$ 2400 Baud Rate
000002 4800 Baud Rate
000003 9600 Baud Rate
000004 19200 Baud Rate
Pro－270000001 Stop BitORSOn 2 Stop Bits
$\square ゥ \square-\square \square$ Reset and Set protection（Accessing from front panel）
000000 There is no Reset and Set protection
000001 Reset Button protection is active
000002 SET1 and SET2 protection is active
000003 Reset Button，SET1 and SET2 protection is active（Full protection）
000004 SET1 protection is active
000005 SET2 protection is active
Pro－30 Multiplication Coefficient
Count value is multiplied with this value．It can be adjusted from ODODO th．999993 ．If it is 010000 ，it has no effect．
Pro－P5 Program PasswordIt is used for accessing to the program parameters．It can be adjusted from 000000 to 009993 ．If it is 000000 ，there is nopassword protection．

7.6.1 BATCH COUNTER Applications Examples

EXAMPLE-1:
There is a production band like in diagram below. Bottles are perceived by a proximity sensor in Ch-A. If
Pro-0 $=000000 ;$ Pro- $30=010000 ;$

Device is used in a packing line as shown on the left. Bottles must be counted into packs of 4 bottles and dispatched in a box containing a batch of 4 packs. According to this, SET1 and SET2 are defined 4.4 pieces of packet which contain a batch of 4 series are allowed to be formed.
If Pro-05 = OODOD (Automatic Reset1);after arranging the bottles in a box as shown on the left, output-1 will be active and it stops the system. Batch count value is reset and it will be ready to count the new series.

EXAMPLE-2:

There is a cloth workbench. An encoder with 100 pulse is connected to this system. The encoder is connected to $\mathrm{Ch}-\mathrm{A}$ and $\mathrm{Ch}-\mathrm{B}$ inputs.

If Pro-D $=000005$; Pro-04 $=$ DODODO;
Pro-19 = 000000 And Pro-30 $=010000$;

Coefficient parameter is adjusted to be able to observe the cloth length in actual value screen. If we want to be cut the cloth in same lenght at 5 m and stopped the system when 40 pieces of 5 m cloths are formed, SET1 must be 40 and SET must be 5 .

7.7 TIMER Parameters

SET1

SET value for Output-1. Control of the Output-1 is done according to this value. It can be changed by time unit and scale selection parameter Pro-05

SET2

SET value for Output-2. Control of the Output-2 is done according to this value. It can be changed by time unit and scale selection parameterPro-05

Pro-05

Time Unit and Scale Selection
Hour / Minute It can be adjusted from ODODOD to 009959
Minute / Second
It can be adjusted from 000000
므Nㄹ Second/Millisecond
It can be adjusted from 000000 to 009999

000003

O20504

000055
000006
Pra-05
000000
Manual Reset-1. Device continues to count till manual reset is applied. Output-2 pulse time Pro-17] is not considered.
000001
Manual Reset-2. Device continues to count till count value reaches to SET2 value. For starting to count again, manual reset input must be active. Output2 pulse time $P_{r o-17}$] is not considered.

Manual Reset-3. It operates like Manual Reset-1. Only difference, output-2 pulse time Pro-17 is considered.

Automatic Reset-1. Count value becomes zero $(0 \Rightarrow P)$ when it reaches to SET2 value. Count value is added to total count value and device starts to count from OODODO

O20504
Automatic Reset-2. Counting is stopped when count value reaches to SET2 value. Count value is becomes zero ($0 \Rightarrow P$) at the end of output-2 pulse time Pro-17] And device starts to count again.

In operation with Manual or Automatic Reset, at the end of the reset operation, if counting direction parameter $P_{r o-19}$ is 000000 ($0 \Rightarrow P$), count value becomes DODODT, If Pra-19 is DODOD $(P \Rightarrow 0)$, count value becomes SET2.
For details on parameters, refer to Section 8 (Program Parameters).

Automatic Reset-3. Count value becomes zero $(0 \Rightarrow P)$ when it reaches to SET2 value. Device starts to count again. Meanwhile, SET2 value is shown in actual value display, count value is shown at the end of output- 2 pulse time Pro-17]

DOODO5 Automatic Reset-4. Counting is continued when count value reaches to SET2 value.Count value is becomes zero $(0 \Rightarrow P)$ at the end of Output-2 pulse time Pro-17. Device starts to count again.

OODOD 7 Automatic Reset-5. When count value reaches to SET2 value, SET1 changes position, count value becomes zero (for $0 \Rightarrow P$) Output-1 and Output2 does not change position position until count value reaches to SET2 value.

In operation with Manual or Automatic Reset, at the end of the reset operation, if counting direction parameter Pro-13 is 000000 ($0 \Rightarrow P$), count value becomes 000000 . If Pra-19 is $000001(P \Rightarrow 0)$,count value becomes SET2.

$\square \square-14$

Operation form for Output-1
ODODOS Output-1 Normally non-energised
ODNOD 1 Output - 1 Normally energised

Pro-15

Operation form for Output-2
000000
Output-2 Normally non-energised
000001 Output-2 Normally energised

Output-1 Pulse Time
Energising time for Output-1. It can be adjusted from 000000 to 009993 If it is 010200 , it operates indefinitely.

Output-2 Pulse Time
Energising time for Output-2. It can be adjusted from000000 to 009939 If it is DODODS, it operates indefinitely.

Selection of counting direction
000000
Upcount ($0 \Rightarrow$ Preset $)$
ODODC 1 Downcount (Preset $\Rightarrow 0$)

Saving Count Value (Power down back-up)
000000
Count value is saved when power is off and restored on power up.
ODODO 1 Count value is not saved to memory when power is off
Pro-23

Slave Address

Device address for serial communication bus. It can be adjusted from 00000 t to 000247
Pro－24 Selection of Modbus Protocol Type
டロロワワロ MODBUSASCII communication protocol is selected．
पПG7 i MODBUS RTU communication protocol is selected
Pro－25 Parity
OUNODG No parity
ㄱロロロ Odd parity
000002 Even parity
Pro－26 Baud Rate
BROOD 1200 Baud Rate
DODO 2400 Baud Rate
ロロロロコ 4800 Baud Rate
000003 9600 Baud Rate
000004 19200 Baud Rate
$\square \square \square-\square 7$ Stop Bit
000000 1 Stop Bit
000001 2 Stop Bits
Pro－2日 Reset and Set protection（Accessing from front panel）ATAOAD There is no Reset and Set protectionNOD 1 Reset Button protection is active
ロロロロロㄹ SET1 and SET2 protection is active
000003 Reset Button，SET1 and SET2 protection is active（Full protection）
000004 SET1 protection is active
000005 SET2 protection is active
Pro－P5 Program PasswordIt is used for accessing to the program parameters．It can be adjusted from 000000 to 009993 ．If it is 000000 ，there is nopassword protection．

7.7.1 Timer Applications Examples

EXAMPLE-1 :
There is a switch for giving start and stop signal on PAUSE input.
If Pro-05 = 00000;

When switch is "On", counting is started (Minute / second). When switch is "Off", counting is stopped. Time between opening and closing of the switch is observed on actual value screen.
Expired time can be reset with manual reset. If total operation time is wanted to be observed on the screen, manual reset is not applied and after Start/Stop operation counting is started from the last count value.

NOTE: If output-1 and output-2 is wanted to be used as an alarm output;
For example SET1 $=10.00 ;$ SET2 $=30.00$ and Pro-DE $=$ ODODOL
Device starts to count (Minute / second) when switch is "On". It is possible to have a warning when SET1 and SET2 times are expired and stopping the alarm at the end of the Output-1 and Output-2 pulse times.(Pro-15 And Pro-17)

7．8 FREQUENCYMETER／TACHOMETER Parameters
SET1
SET value for Output－1．Control of the Output－1 is done according to this value．It can be adjusted from 00000 D 999998

SET2

SET value for Output－2．Control of the Output－2 is done according to this value．It can be adjusted from 000000 999598

Pro－03

000000

믄ㄷ
$\square 5 \square-\square 4$
Pulse Time of Ch－A，Ch－B，Reset and Pause Inputs
It is used to protect against the electrical contact debounce or the signal that is less than the determined pulse time．
 OLDODD then there is no time protection for $\mathrm{Ch}-\mathrm{A}$ and Ch －B．If the parameter value is adjusted DODNOD or DODND times are accepted as 2 msec ．

Time Out（Input Signal Reset Time）
The actual value is reset，if there is no signal in Ch－A input during this time

Pro－08

Measurement Period
Number of pulses is counted during this time
It can be adjusted from 00000 to 000999

Pra－П马 Output－1 Function

\square Output－1 is latched．It does not change position until manual reset is applied．
\square Non－latched with hysteresis output is selected．

근ㄱㄱ Output－1 is an alarm output．For details，refer to Output－1 Alarm functions parameter $P_{r a^{-}} \mid$．

Output-2 Function
OTODOS Output-2 is latched. It does not change position until manual reset is applied.

DAOM 1 Non-latched with hysteresis output is selected.

$\square_{r}-11$

 DROAD
 $\square ゥ \square-1 \square$

BODOD2 Deviation High Alarm.
OИODO3 Deviation Low Alarm.
DODOत4 Deviation Band Alarm.
Hysteresis for Output-1
Hysteresis for Output-1. It is used if Output-1 is non-latched.
It can be adjusted from 000000 to 050000

Pro-13

Hysteresis for Output-2
Hysteresis for Output-2. It is used if Output-2 is non-latched.
It can be adjusted from 000000 to 050000

Pro- 14

Operation form for Output-1
DODOD Output-1 Normally non-energised
ODOD 1 Output-1 Normally energised

Pro- 15
 Operation form for Output-2

ODODOD Output-2 Normally non-energised
OUODO 1 Output-2 Normally energised

$\square^{\square}-1 \square$ Output-1 Pulse Time

Energising time for Output-1. It can be adjusted from 000000 to 0099.99 If it is DODSDO , then it operates indefinitely.
$P_{r}-17$
Output-2 Pulse Time
Energising time for Output-2. It can be adjusted from 000000 to 009999 If it is DODCDD, then it operates indefinitely.
Pro－18 Start of Controlling
Сロロロロロ Controlling is started when the device is energised
毋ロロロロ Controlling is started when count value reaches to SET1 value．
000002
$\square \square \square-\square \square$ Point Position for display
000005 No point
டロロロロ Between first and second digits
டロロロロコ Between second and third digits
000003 Between third and fourth digits
000004 Between fourth and fifth digits
Pro－23 Slave AddressDevice address for serial communication bus．
It can be adjusted from 00000 to 000247
Pra－ュ4 Selection of Modbus Protocol Type
OTONOD MODBUSASCII communication protocol is selected．
그무 MODBUS RTU communication protocol is selected
Pro－25 Parity
DODOD No parity
Ъロロロロ Odd parity
000002 Even parity
Pro－26 Baud RateODODOD 1200 Baud Rate
ODOD二 2400 Baud Rate
믄ㄷㄹ 4800 Baud Rate
000003 9600 Baud Rate
000004 19200 Baud Rate
$\square ゥ \square-\square 7$ Stop Bit
000000 1 Stop Bit
00000 2 Stop Bits

OTODOD There is no Reset and Set protection
OUTDO 1 Reset Button protection is active
ODODT2 SET1 and SET2 protection is active
ODODZ3 Reset Button, SET1 and SET2 protection is active (Full protection)
ODODO4 SET1 protection is active
ODOLO5 SET2 protection is active
$\square\ulcorner\square-\beth \square$ Frequency/Cycle Multiplication Coefficient
Count value is multiplied with this value. It can be adjusted from 00000 Ito 009999

Pro-30

Multiplication Coefficient
Count value is multiplied with this value. It can be adjusted from 02000 Ito. 999993 . If it is 0000 , it has no effect.

ProPS

Program Password

It is used for accessing to the program parameters.
It can be adjusted from 000000 to 009993 . If it is 000000 , there is no password protection.

7.8.1 FREQUENCYMETER / TACHOMETER Applications Examples

Two different methods are used in Frequencymeter / Tachometer function;
Method -1 : To get frequency or cycle value by measuring the revolution time
(This method is used if the sensor sends one pulse per revolution)
Method -2 : To get frequency or cycle value by counting the pulses during the time is set in Pro-0B parameter

Method -1 :

If Pro-03 is 000000;
Measuring starts on rising edge of Ch-A input. Time (T) is between two rising edge.

If Pro-29 parameter is 00000 , Pro-30 parameter is 010000 , then speed is measured cycle per second.
For measuring the speed cycle per minute, Pro-23 parameter must be 000050
For measuring the speed cycle per hour, Pro-29 parameter must be 003500

EXAMPLE-1:

There is a cloth workbench as shown below:
When Pro-29 parameter is 000001 , Pro-30 parameter is 010000 , cloth is advanced 80 cm per revolution and $20 \mathrm{cycle} / \mathrm{sec}$ is observed on the display.
User can observe cloth length, 80 cm , on the display by changing the Pro-23 and Pro-30 Parameter

If Pro-29 $=1$
Pro -30 Multiplication coefficient $=80 / 20=4$
After adjustment of the parameter, $80 \mathrm{~cm} / \mathrm{sec}$ is observed on the display.

For dm/sec, point position for display parameter Pro -20 must be 00000 Form/sec, point position for display parameter Pro-20 must be 000002

Forcm/minute, Pra-29 parameter must be 000050
Forcm/hour, Pro-29 parameter must be 003500

Method-2:

If Pro-03 parameter is 00000 ;
Pulses in Ch-A input is counted during time is set in Pro- parameter. Average time for one pulse is calculated.

EXAMPLE-2 :
For one revolution of cylinder 10 pulse is applied in Ch-A input during Pro-0B = OOOD2.

If 10 pulse is applied during 2 secs;
$T=2 / 10=0.2 \mathrm{sec} f=1 / T \mathrm{f}=5 \mathrm{cycle} / \mathrm{sec}$ is shown on the display

If Pro-29 parameter is 00000 and Pro-30 parameter is 0 IODOD , speed is measured as cycle per second.
For cycle / minute, Pro-29parameter must be 000050
For cycle / hour, Pro-29 parameter must be 003600

EXAMPLE-3:

8 pulse is applied per revolution during $P r o-08=000005$ If Pro-23 parameter is DODOC and
Pro-30 Parameter is 0 IODOD, speed of the system (cycle per second) is calculated as shown below:

If 8 pulse is applied during 0.5 sec ;
$T=0.5 / 8=0.0625 \mathrm{sec} f=1 / T \mathrm{f}=16 \mathrm{cycle} / \mathrm{sec}$ is shown on the display
For cycle / minute, Pro-29 parameter must be 000050
For cycle/hour, Pro-29 parameter must be 003500

SET value for Output-1. Control of the Output-1 is done according to this value. It can be changed by time unit and scale selection parameter Pro-05

SET
SET value for Output-2. Control of the Output-2 is done according to this value. It can be changed by time unit and scale selection parameter Pro-05

Pra-Mㄹ

Input Type and Function Selection for Chronometer
Period measurement of signals in Ch-Ainput
000001
Pulse time measurement of signals in Ch-Ainput
000002
Sum of the time difference between Ch-A and Ch-B inputs rising edges

Pro-04

Pulse Time of Ch-A, Ch-B, Reset and Pause Inputs

It is used to protect against the electrical contact debounce or the signal that is less than the determined pulse time.
It can be adjusted from 000000 to 000250 msec . If it's adjusted to 000000 then there is no time protection for $\mathrm{Ch}-\mathrm{A}$ and $\mathrm{Ch}-\mathrm{B}$. If the parameter value is adjusted 020000 or 000001 then Reset and Pause protection times are accepted as 2 msec .

$\square_{r}-\square 5$ Time Unit and Scale Selection

OUSODS Hour/ Minute
It can be adjusted from 000000 to 009959
Minute / Second
It can be adjusted from 000000 to 009953
OHODS Second/ Millisecond
It can be adjusted from 000000 to 009999
ODODO3 Hour/Minute
It can be adjusted from 0002005 to 002359
000004 Hour
It can be adjusted from 0000.00 to 099999
ODODO5 Minute
It can be adjusted from 000000 to 099393
\qquad Second
It can be adjusted from 000000
In operation with Manual or Automatic Reset, at the end of the reset operation, if counting direction parameter $P r \sigma^{-19}$ is 000000 ($0 \Rightarrow P$), count value becomes 00000 D . If Pro- 19 is DODOD $(P \Rightarrow 0)$, count value becomes SET2.

Manual Reset-1. Device continues to count till manual reset is applied. Output-2 pulse time Pro-17] is not considered.
000001 Manual Reset-2. Device continues to count till count value reaches to SET2 value. For starting to count again, manual reset input must be active. Output2 pulse time $\operatorname{Pro-17]}$ is not considered.
DODOD Manual Reset-3. It operates like Manual Reset-1. Only difference, output-2 pulse time $\operatorname{Pro-17]~is~considered.~}$
000003 Automatic Reset-1. Count value becomes zero (for $0 \Rightarrow P$) when it reaches to SET2 value and device starts to count again.
000004 Automatic Reset-2. Counting is stopped when count value reaches to SET2 value. Count value becomes zero (for $0 \Rightarrow P$) at the end of output-2 pulse time Pro-17 And device starts to count again.
000055 Automatic Reset-3. Count value becomes zero (for $0 \Rightarrow P$) when it reaches to SET 2 value. Device starts to count again. Meanwhile, SET2 value is shown in actual value display, count value is shown at the end of output-2 pulse time.
00025 Automatic Reset-4. Counting is continued when count value reaches to SET2 value. Count value becomes zero ($0 \Rightarrow \mathrm{P}$) at the end of Output-2 pulse time Pro-17] device starts to count again.
000007 Automatic Reset-5. When count value reaches to SET2 value, SET1 changes position, count value becomes zero ($0 \Rightarrow \mathrm{P}$). Output- 1 and Output-2 do not change position, until count value reaches to SET2 value.

In operation with Manual or Automatic Reset, at the end of the reset operation, if counting direction parameter Pro-i9 is 000000 ($0 \Rightarrow \mathrm{P}$), count value becomes 000000 . If Pro- 15) is 00000 ($(P \Rightarrow 0)$,count value becomes SET2.

Operation form for Output-1
Output - 1 Normally non-energised
Output - 1 Normally energised
Operation form for Output-2
Output - 2 Normally non-energised
Output - 2 Normally energised
Output-1 Pulse Time
Energising time for Output-1. It can be adjusted from 000000 to 009399 If it is 000000 , then it operates indefinitely.

Output-2 Pulse Time
Energising time for Output-2. It can be adjusted from 000000 to 009993 If it is 000000 , then it operates indefinitely.

Selection of counting direction
ODODO Up count ($0 \Rightarrow$ Preset)
ONOD Downcount (Preset $\Rightarrow 0$)
For details on parameters, refer to Section 8 (Program Parameters).

Pro－2｜
000000
Saving Count Value（Power down back－up）
powerup．
SODND 1 Count value is not saved to memory when power is disconnected

Slave Address
Device address for serial communication bus．
It can be adjusted from 0000

000000
Selection of Modbus Protocol Type

［00000］Pro－25

Parity
ORODND No parity
ODOL二 1 Odd parity
그Nㄹ Evenparity

ロゥローム曰 Baud Rate

OUOUOD 1200 Baud Rate
DODOD 2400 Baud Rate
BNODND 4800 Baud Rate
근그 9600 Baud Rate
ODODOU 19200 Baud Rate

Stop Bit
그느․ 1 Stop Bit
OUODO 2 Stop Bits
ロrローム日
Reset and Set protection（Accessing from front panel）
DODOD，There is no Reset and Set protection
ODOD， 1 Reset Button protection is active
OHODZ2 SET1 and SET2 protection is active
OLO二〇3 Reset Button，SET1 and SET2 protection is active（Full protection）
OИOD， 4 SET1 protection is active
OLOTO5 SET2 protection is active

$\square_{r}-\square_{5}$ Program Password

It is used for accessing to the program parameters．
It can be adjusted from O20000 to 009999 ．If it is 000000 ，there is no password protection．

For details on parameters，refer to Section 8 （Program Parameters）．

7.9.1 Examples About CHRONOMETER Applications

EXAMPLE-1:
There is a switch for giving start and stop signal on Ch-Ainput.
Pro-02 $=00000$; Pro-04 $=000050 ;$ Pro-05 $=000001$ iken;

When switch is "On", counting is started (Minute / second). When switch is "Off", counting is stopped. Time between opening and closing of the switch is observed on actual value screen.
Expired time can be reset with manual reset. If total operation time is wanted to be observed on the screen, manual reset is not applied and after Start/Stop operation counting is started from the last count value.

EXAMPLE-2:

There is a production band as shown below. There are two sensors, first is on Ch-A input used for starting the system, second is on Ch-B input used for stopping the system. If
Pro-02 = 000002] ; Pro-04 = 000050 ; Pro-05 = 000001;

When the object passes in front of the first sensor on Ch-A input, counting is started (Minute / second).
When the object passes in front of the second sensor on ChB input, counting is stopped.
Time between two objects can be determined.

Parameters are grouped as program parameters. Accessing to the program parameters is same for all functions. So, only accessing to the program parameters for COUNTER / "TOTALIZER COUNTER" is explained in this section. For details on parameters refer to PROGRAM PARAMETERS section.

When PROG button is pressed, password must be entered for accesing to the parameters.

Press Enter button to confirm password

Press ENTER button

Password Screen

Enter password with shift and increment button.

Input Types and Functions

The most significant digit of the parameter (1st digit for this parameter) flashes.

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

The most significant digit of the parameter (3rd digit for this parameter) flashes.

Pulse Time of Ch-A, Ch-B, Reset and Pause Inputs

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button
the parameter (1st digit for this parameter) flashes. the parameter (1st digit for this parameter) flashes. without doing any changes.

Press PROG button to exit from programming section without doing any changes.

The most significant digit of the parameter (1st digit for this parameter) flashes.

The most significant digit of

The most significant digit of

SET2

Output Functions

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button
Output-1 Operation Form

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button
Output-2 Operation Form

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button
Output-1 Pulse Time

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button

The most significant digit of the parameter (4th digit for this parameter) flashes.

Pro- 17 H

Press PROG button to exit from programming section without doing any changes.

The most significant digit of the parameter (1st digit for this parameter) flashes.

Press PROG button to exit from programming section without doing any changes.

The most significant digit of the parameter (1st digit for this parameter) flashes.

Press PROG button to exit from programming section without doing any changes.

The most significant digit of the parameter (1st digit for this parameter) flashes.

Output-2 Pulse Time

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button

Direction of the Counting

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button

Point position for the

 displayYou can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button

Saving Count Value (Power down back-up)

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button

The most significant digit of the parameter (1st digit for this parameter) flashes.

The most significant digit of the parameter (3rd digit for this parameter) flashes.

Press PROG button to exit from programming section without doing any changes.

The most significant digit of the parameter (1st digit for this parameter) flashes.

Press PROG button to exit from programming section without doing any changes.

The most significant digit of the parameter (1st digit for this parameter) flashes.

Press PROG button to exit from programming section without doing any changes.

SET2

SET1 Operation Form Selection

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button

Communication Accessing Address

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button

Modbus Protocol Type Selection

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button

Parity Selection

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button

The most significant digit of the parameter (1st digit for this parameter) flashes.

Press PROG button to exit from programming section without doing any changes.

The most significant digit of the parameter (1st digit for this parameter) flashes.

Press PROG button to exit from programming section without doing any changes.

The most significant digit of the parameter (1st digit for this parameter) flashes.

Press PROG button to exit from programming section without doing any changes.

The most significant digit of the parameter (6th digit for this parameter) flashes.

Press PROG button to exit from programming section without doing any changes.

SET2

Baud Rate

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button

Stop Bit Selection

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button

Reset and Set Protection

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button

Multiplication Coefficient

You can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button.

Press ENTER button

When PSuurd password screen is shown if ENTER button is pressed without entering the password this parameter can not be observed.

The most significant digit of the parameter (4th digit for this parameter) flashes.
Press PROG button to exit from programming section without doing any changes.

Operation Screen

SET1
SET

Continue to press ENTER button for

Input Types

Program Password
User can change the parameter with INCREMENT button, save it to the memory and pass to the next parameter with ENTER button. scanning all parameters. and Functions

Pro-0:
 Input Types and Functions
 (It is accessible in COUNTER / "TOTALIZER COUNTER" and BATCH COUNTER functions)

GZGZGZ Upcount on rising edge of Ch-Ainput

Ch-A \qquad \uparrow F

\qquad Pause

Value on
Start the Screen

000002
Upcount on rising edge of Ch-Ainput.
Downcount on rising edge of Ch-B input.

Upcount on rising edge of $\mathrm{Ch}-\mathrm{Ainput}$ when $\mathrm{Ch}-\mathrm{B}$ is at 0 Downcount on rising edge of $\mathrm{Ch}-\mathrm{A}$ when $\mathrm{Ch}-\mathrm{B}$ is at 1
 Value on Value $=0$ 1 $1 \square 2 \square 1 \square 0 \square 1 \square$
the Screen

Start Value on Value $=8 \sqrt{7}$, $6 \sqrt{7} \sqrt{8} \sqrt{7}$

Counting to the Screen

x1 Phase Shifting (for incremental encoders)
Upcount on rising edge of Ch-A input when Ch-B is at 0 Downcount on falling edge of Ch-A input when Ch-B is at 0

If Pro-0 is 020005 , Pro-04 must be 00000 . If not counting is not performed.

(i)If Prob is 000005, Pro-04 must be 000000 . If not counting is not performed.

xt Phase Shifting (for incremental encoders)
Upcount on rising edge of Ch-A when Ch-B is at 0 Downcount on falling edge of $\mathrm{Ch}-\mathrm{A}$ when $\mathrm{Ch}-\mathrm{B}$ is at 0 Downcount on rising edge of $\mathrm{Ch}-\mathrm{A}$ when $\mathrm{Ch}-\mathrm{B}$ is at 1 Upcount on falling edge of Ch-A when Ch-Bis at 1

Downcount on rising edge of $\mathrm{Ch}-\mathrm{B}$ when $\mathrm{Ch}-\mathrm{A}$ is at 0 Upcount on falling edge of Ch-B when Ch-A is at 0 Upcount on rising edge of $\mathrm{Ch}-\mathrm{B}$ when $\mathrm{Ch}-\mathrm{A}$ is at 1 Downcount on falling edge of $\mathrm{Ch}-\mathrm{B}$ when $\mathrm{Ch}-\mathrm{A}$ is at 1
 performed.

НПППП 1 Pulse time measurement in Ch-Ainput.

000002
Sum of the time difference between Ch-A and Ch-B inputs rising edges
 according to the time range is set in Time Unit and Scale selection parameter Pro-05

Selection of Measuring Method
(It is accessible only in FREQUENCYMETER / TACHOMETER Function)

Frequency or cycle is calculated by measuring cycle time of the signals in Ch-Ainput

Frequency or cycle is calculated by counting the pulses in Ch-A input during the time is set in measurement period parameterPro-0B

For details on these methods, refer to Section 7.8.1"Examples About Frequencymeter/Tachometer Function Applications"
Only Ch-A input performs in Frequencymeter / Tachometer function.

Pulse Time of Ch-A, Ch-B, Reset and Pause Input (It is accessible in functions except for TIMER function)

It is used to protect against the electrical contact debounce or the signal that is less than the determined pulse time.
It can be adjusted from 000000 to 000250 msec . If it's adjusted to
[00000] then there is no time protection for Ch-A and Ch-B. If the parameter value is adjusted DODODO or DODOD then Reset and Pause protection times are accepted as 2 msec .
 000007 then pulse time of Ch-A and Ch-B parameter Pro-04 must be ODODOD. If not counting is not performed.

Pro-05

Selection of Time Unit and Scale
(It is accessible in TIMER and CHRONOMETER functions)

Hour / Minute
It can be adjusted from 000000 to 00939

Minute / Second
It can be adjusted from 000000 to 009953

Second / Millisecond It can be adjusted from 000000 to 009993

Hour / Minute
It can be adjusted from 00000003

Hour

Minute

Second
It can be adjusted from $00 \square 0.00$ to 099999
After adjustment of Time Range parameter Pro－D5 ，if SET1 and SET2 values are not appropriate for this selection，SET1 and SET2 are changed according to this selection．（E．g．If time range is 99.99 and SET1 is 45.94 ，there is no problem． If time range is 99.59 and SET1 is 45.94 ，then SET1 is changed as 45．59）

Pra－ 55 output Functions

（It is accessible in functions except for FREQUENCYMETER／ TACHOMETER function）
This parameter can be adjusted from 000005 to 0000 in Batch Counter function and operates different from the other functions．

Pra－$\square 5 \Rightarrow \square \neg \square \cap \cap \square$ Manual Reset－1．

Device continues to count till manual reset is applied． Output－2 pulse time $\mathrm{PrO}_{\mathrm{O}^{-}} 17$ ］is not considered．

How it operates in COUNTER／＂TOTALIZER COUNTER＂，TIMER and CHRONOMETER function is explained below：

Counting direction ： $\mathbf{0} \Rightarrow \mathbf{P}$（Upcount）Pro－19 $=000000$

When count value reaches to SET1 value，Output－1 becomes active．If Output－1 pulse time Pro－15 is 000000 ，Output－1 does not change condition until manual reset input is active．If Output－1 pulse time
Pro－I6 Is not 0 ，at the end of the pulse time Output－1 becomes inactive．When count value reaches to SET2 value，Output－2 becomes active．Counting continues over SET2 value．Output－2 pulse time Pro－17 Is not considered．

Count value is added to total count value when manual reset is active in COUNTER／＂TOTALIZER COUNTER＂functions．

How it operates in COUNTER / "TOTALIZER COUNTER", TIMER and CHRONOMETER functions is explained below:

Counting direction : $\mathbf{P} \Rightarrow \mathbf{0}$ (Downcount) Pro-19 = 0000

When the count value reaches to SET1 value, Output-1 becomes active. If Output-1 Pulse Time Pro-15] is 000000 , Output-1 does not change condition until manual reset input is active. If Output-1 pulse time $\left.\mathrm{Pro}_{\mathrm{o}^{-1}} \mathrm{I}\right]$ is not 0, Output-1 becomes inactive at the end of the pulse time. When actual value reaches to 000000 , Output- 2 becomes active. Counting countinues under 000000 Output-2 pulse time Pro-17 Is not considered.

Count value is added to total count value when manual reset is active in COUNTER/"TOTALIZER COUNTER" functions.

Pro-06 $=00001$ Manual Reset-2.

(Output-2 Pulse Time $P_{r O^{-}} 17$ is not considered)
How it operates in COUNTER / "TOTALIZER COUNTER", TIMER and CHRONOMETER functions is explained below:

Counting direction : $\mathbf{0} \Rightarrow \mathbf{P}$ (Upcount) Pro-19 $=000000$

When the count value reaches to SET1 value, Output-1 becomes active. If Output-1 pulse time Pro-15 is OOODOD, Output-1 does not change position until manual reset input is active. If Output-1 pulse time Pro-15 is not 0 , Output-1 becomes inactive at the end of the pulse time.
When the count value reaches to SET2 value, Output-2 becomes active. Counting does not continue over SET2 value. For starting to count manual reset input must be active. Output-2 Pulse Time Pro-17 Is not considered.
Count value is added to total count value when manual reset is active in COUNTER/"TOTALIZER COUNTER" functions.

How it operates in COUNTER / "TOTALIZER COUNTER", TIMER and CHRONOMETER functions is explained below:

Counting direction : P $\Rightarrow \mathbf{0}$ (Downcount) Pro-19 000000

When the count value reaches to SET1 value, Output-1 becomes active. If Output-1 pulse time Pro- 15 is 000000 , Output-1 does not change condition until manual reset input is active. If Output-1 pulse time Pro-15 is not 0, Output-1 becomes inactive at the end of the pulse time.
When the count value reaches to 000000$]$ value, Output-2 becomes active. Counting does not continue under 0,00020 . For starting to count manual reset input must be active. Output-2 pulse time Pro- 17 Is not considered.

Count value is added to total count value when manual reset is active in COUNTER/"TOTALIZER COUNTER" functions.

Manual Reset-3.
Counting continues until Manual Reset input is active. (Output-2 Pulse Time Pro-17 is considered)

How it operates in COUNTER / "TOTALIZER COUNTER", TIMER and CHRONOMETER functions is explained below:

When the count value reaches to SET1 value, Output-1 becomes active. If Output-1 Pulse Time Pro^{-16} is not 0 , Output- 1 changes position at the end of the pulse time. If Output-1 Pulse Time Pro- 15 is 0 OOUODt changes position until Manual Reset input is active or according to Output-2.
When the count value reaches to SET2 value, Output-2 becomes active. Counting continues until manual reset input is active. If Output-2 Pulse Time $\operatorname{Pro-17]}$ is not 0, Output-2 changes position at the end of the pulse time. In this case, if Output-1 is active, it becomes inactive with Output-2.

Count value is added to total count value when manual reset is active in COUNTER/"TOTALIZER COUNTER" functions.

How it operates in COUNTER / "TOTALIZER COUNTER", TIMER and CHRONOMETER function is explained below:

Counting direction : $\mathbf{P} \Rightarrow \mathbf{0}$ (Downcount) Pro-19 $=00000$ i

When the count value reaches to SET1 value, Output-1 becomes active. If Output-1 pulse time Pra-16 is not 0 , Output- 1 changes position at the end of the pulse time.If Output-1 Pulse Time Pro- I6 is 0 ODODD it changes position until Manual Reset input is active or according to Output-2.
When count value reaches to 000000 value, Output-2 becomes active. Counting continues until manual reset input is active. If Output-2 Pulse time Pro - 17] is not 0 , Output-2 changes position at the end of the pulse time. In this case, if Output-1 is active, it becomes inactive with Output-2.

Count value is added to total count value when manual reset is active in COUNTER/"TOTALIZER COUNTER" functions.

How it operates in COUNTER / "TOTALIZER COUNTER", TIMER and CHRONOMETER functions is explained below:

Counting direction : $\mathbf{0} \Rightarrow P$ (Upcount)
Pro-19 = 000000

When the count value reaches to SET1 value, Output-1 becomes active. If Output-1 pulse time Pro- IG] is not 0 , Output- 1 changes position at the end of the pulse time. If Output-1 Pulse Time [Pro-15 is 000000 , it changes position until Manual Reset input is active or according to Output-2 position.
When the count value reaches to SET2 value, Output-2 becomes active. Count value is reset. If Output-2 pulse time $P_{r \sigma^{-}} 17$ is not 0 , Output-2 changes position at the end of the pulse time. In this case, if Output-1 is active, it becomes inactive with Output-2.

Count value is added to total count value when automatic reset is active in COUNTER / "TOTALIZER COUNTER" functions.

How it operates in COUNTER / "TOTALIZER COUNTER", TIMER and CHRONOMETER function is explained below:

Counting Direction : $\mathbf{P} \Rightarrow \mathbf{0}$ (Downcount) Pro-19 $=00001$

When the count value reaches to SET1 value, Output-1 becomes active. If Output-1 pulse time Pro-15 is not 0 , Output- 1 changes position at the end of the pulse time. If Output-1 Pulse Time Pro-15 is 000000 it changes position until Manual Reset input is active or according to Output-2 position.
When the count value reaches to 000000 D value, Output-2 becomes active. Count value becomes equal to Set-2 value and counting is started again. If Output-2 pulse time Pro-17 is not 0, Output-2 changes position at the end of the pulse time. In this case, if Output-1 is active, it becomes inactive with Output-2.

Count value is added to total count value when automatic reset is active in COUNTER / "TOTALIZER COUNTER" functions.

How it operates in COUNTER / "TOTALIZER COUNTER", TIMER and CHRONOMETER function is explained below:

Counting direction : $\mathbf{0} \Rightarrow \mathbf{P}$ (Upcount) Pro-19=000000

When the count value reaches to SET1, Output-1 becomes active. If Output-1 pulse time Pro-i5 is not 0 , Output- 1 changes position at the end of the pulse time. If Output-1 Pulse Time Pro-15 is 000000 , it changes position until Manual Reset input is active or according to Output-2 position.
When the count value reaches to SET2, Output-2 becomes active. Counting is stopped. If Output-2 pulse time Pro-17 is not 0 , count value is reset and Output-2 becomes inactive at the end of the pulse time. In this case, if Output-1 is active, it becomes inactive with Output-2.

Count value is added to total count value when automatic reset is active in COUNTER / "TOTALIZER COUNTER" functions.

How it operates in COUNTER / "TOTALIZER COUNTER", TIMER and CHRONOMETER functions are explained below:

Counting direction : $\mathbf{P} \Rightarrow \mathbf{0}$ (Downcount) Pro-19 $=00000$

When the count value reaches to SET1, Output-1 becomes active. If Output-1 pulse time Pro-15 is not 0, Output-1 changes position at the end of the pulse time. If Output-1 Pulse Time Pro- 16 is 000000 , it changes position until Manual Reset input is active or according to Output-2 position.
When the count value reaches to 000000 value, Output-2 becomes active. Counting is stopped. If Output-2 pulse time $P_{r O^{-}} 17$ is not 0 , count value becomes equal to SET2 value, counting is started again and Output-2 becomes inactive. In this case, if Output-1 is active, it becomes inactive with Output-2.

Count value is added to total count value when automatic reset is active in COUNTER /" TOTALIZER COUNTER" functions.

How it operates in COUNTER / "TOTALIZER COUNTER", TIMER and CHRONOMETER functions are explained below:

When the count value reaches to SET1, Output-1 becomes active.If Output-1 pulse time $P_{r_{0}-15}$ is not 0 , Output- 1 changes position at the end of the pulse time. If Output-1 Pulse Time Pro-15 is 000000 , it changes position until Manual Reset input is active or according to Output-2 position.
When the count value reaches to SET2, Output-2 becomes active and count value is reset.
When the count value reaches to SET2, Output-2 becomes active and count value is reset. But SET2 value is observed in actual value display. If Output-2 pulse time Pro-17] is not 0 , count value is observed in actual value display and Output-2 becomes inactive. In this case, if Output-1 is active, it becomes inactive with Output-2.
Count value is added to total count value when automatic reset is active in COUNTER / "TOTALIZER COUNTER" functions.

How it operates in COUNTER / "TOTALIZER COUNTER", TIMER and CHRONOMETER functiona are explained below:

Counting Direction : $\mathbf{P} \Rightarrow \mathbf{0}$ (Downcount) Pro-19 $=00000$

When the count value reaches to SET1, Output-1 becomes active. If Output-1 pulse time $P_{r o}-15$ is not 0 , Output- 1 changes position at the end of the pulse time. If Output-1 Pulse Time Pro-15 is 000000 , it changes position until Manual Reset input is active or according to Output-2 position.
When the count value reaches to 002000 value, Output-2 becomes active, count value becomes equal to SET2and counting continues. But 000000 observed in actual value display. If Output-2 pulse time Pro- 17] Is not 0 , count value is observed in actual value screen and Output-2 becomes inactive at the end of the pulse time. In this case, if Output-1 is active, it becomes inactive with Output-2.

Count value is added to total count value when automatic reset is active in COUNTER /"TOTALIZER COUNTER" functions.

Pro-05 $=0000055$ Automatic Reset-4

How it operates in COUNTER / "TOTALIZER COUNTER", TIMER and CHRONOMETER functions are explained below:

Counting direction : $\mathbf{0} \Rightarrow \mathbf{P}$ (Upcount) Pro-19=000000

When the count value reaches to SET1, Output-1 becomes active. If Output-1 pulse time $\operatorname{Pro-I}$] is not 0 , Output- 1 changes position at the end of the pulse time. If Output-1 Pulse Time Pro-15 is 180000 , it changes position until Manual Reset input is active or according to Output-2 position.
When the count value reaches to SET2, Output-2 becomes active and counting continues over 0 . If Output-2 pulse time $P_{r o}-17$ is not 0 , count value is reset and Output-2 becomes inactive at the end of the pulse time. In this case, if Output-1 is active, it becomes inactive with Output-2.

Count value is added to total count value when automatic reset is active in COUNTER / "TOTALIZER COUNTER" functions.

How it operates in COUNTER / "TOTALIZER COUNTER", TIMER and CHRONOMETER functions are explained below:

Counting Direction : $\mathbf{P} \Rightarrow \mathbf{0}$ (Downcount) Pro-19 0 ODOD

When the count value reaches to SET1, Output-1 becomes active. If Output-1 pulse time Pro-15 is not 0 , Output- 1 changes position at the end of the pulse time.If Output-1 Pulse Time Pro-15 is 000000 , it changes position until Manual Reset input is active or according to Output-2 position.
When count value reaches to 000000 value, Output-2 becomes active and counting continues under 0 . If Output-2 pulse Pro-17 time is not 0 , count value becomes equal to SET2 and Output-2 becomes inactive. In this case, if Output-1 is active, it becomes inactive with Output-2.

Count value is added to total count value when automatic reset is active in COUNTER / "TOTALIZER COUNTER" functions.

Pulse times Pro-15 and Pro-17 is not considered.
How it operates in COUNTER / "TOTALIZER COUNTER" functions are explained below:

Counting direction : $\mathbf{0} \Rightarrow \mathrm{P}$ (Upcount)
Pro-19 = 000000

If count value is equal or greater than SET1 value, then Output-1 becomes active. Output-1 pulse time $P_{r o-15}$ is not considered. If count value is equal or greater than SET2 value, then Output-2 becomes active. If count value is less than SET2 value, Output-2 becomes inactive. Output-2 pulse time $P_{r o^{-}} 17$ is not considered.

Count value is added to total count value when Manual Reset is performed.

If count value is equal or less than SET1 value, then Output-1 becomes active. If it is greater than SET1 value, Output-1 becomes inactive. Output-1 pulse time $\mathrm{Pra}_{\mathrm{o}} \mathrm{I} 5$ is not considered.
If count value is equal or less than 00000 D value, then Output-2 becomes active. If count value is greater than 000000 value, then Output-2 becomes inactive. Output-2 pulse time Pro-17 is not considered.
Count value is added to total count value when Manual Reset is performed.

How it operates in TIMER and CHRONOMETER functions are explained below:
Counting direction : $0 \Rightarrow P$ (Upcount)
Pra-19 0 OOODOD

If count value is equal to or greater than SET1 value, then Output-1 becomes active. If Output-1 pulse time $\mathrm{Pro}_{\mathrm{r}} 15$ is not 0 , Output-1 changes position at the end of the pulse time. If Output-1 pulse time Pro- 16 Is 000000 , then Output-1 becomes inactive when count value reaches to SET2 value.
When count value reaches to SET2 value, count value is reset and Output-2 becomes active. Output-2 does not change position until count value reaches to SET2 value again.
Output-2 pulse time $\operatorname{Pro-17}$ is not considered.

Counting direction : $\mathbf{P} \Rightarrow \mathbf{0}$ (Downcount) Pro-19 00000

If count value is equal to or less than SET1 value, then Output-1 becomes active. If Output-1 pulse time Pro-16 is not 0, Output-1 changes position at thend of the pulse time. If Output-1 pulse time Pro- 15 is 000005 , when count value reaches to 000000 , Output-1 becomes inactive.
When count value reaches to $\triangle \triangle D O D D, ~ c o u n t ~ v a l u e ~ b e c o m e s ~ e q u a l ~ t o ~$ SET2 value and Output-2 becomes active. Output-2 does not change position until count value reaches to DODODC time Pro-17 Is not considered.

$\square ゥ \square-\square \square$ Output Functions for BATCH COUNTER

How it operates in BATCH COUNTER function is explained below:
Counting direction : $\mathbf{0} \Rightarrow P$ (Counting to upwards)
Pro-19 = OROOUO

When count value reaches to SET2 value, count value is reset and Output-2 becomes active.If Output-2 pulse time Pro-17 is 000000 Then Output-2 does not change position until manual reset input is active. If Output-2 pulse time Pro - 17 is not 0 , Output-2 becomes inactive at the end of the pulse time.
When Output-2 becomes active, batch count value is added 1(Batch count value can be observed by pressing SET1 button). When number of how many times Output-2 is active becomes equal to SET-1 value, then Output-1 becomes active. If Output-1 pulse time $\operatorname{Pro}-16$ is 00000 D , then Output-1 does not change position until manual reset input is active. If Output-1 pulse time $P_{r_{\sigma^{-}}-15}$ is not, then Output-1 becomes inactive at the end of the pulse time.

When count value reaches to $\triangle O D O D O D, ~ c o u n t ~ v a l u e ~ b e c o m e s ~ e q u a l ~ t o ~$ SET2 and Output-2 becomes active. If Output-2 Pulse Time Pro-17 is 000000 , then Output-2 does not change position until manual reset input is active. If Output-2 pulse time $P_{r \sigma^{-}} 17$ is not 0 , then Output-2 becomes inactive at the end of the pulse time.
When Output-2 becomes active, batch count value is added 1(Batch count value can be observed by pressing SET1 button). When number of how many times Output-2 is active becomes equal to SET-1 value, then Output-1 becomes active. If Output-1 pulse time $\operatorname{Pro}-16]$ is 080000 , then Output-1 does not change position until manual reset input is active. If Output-1 pulse time $\mathrm{Pro}_{\mathrm{o}^{-16}}$ is not, then Output-1 becomes inactive at the end of the pulse time.

When count value reaches to SET2 value, count value is reset and Output-2 becomes active. If Output-2 pulse time Pro-17] is 0 Then Output-2 does not change position until manual reset input is active. If Output-2 pulse time $\mathrm{Pr}_{\mathrm{r}}-17$ is not 0 , Output-2 becomes inactive at the end of the pulse time.

When Output-2 becomes active, 1 is added to batch count value is (Batch count value can be observed by pressing SET1 button). When number of how many times Output-2 is active becomes equal to SET1 value, then Output-1 becomes active and Batch count value is reset automatically. If Output-1 pulse time Pro-15 is 000000 , then Output-1 does not change position until manual reset input is active. If Output-1 pulse time Pro-15 is not 0 , then Output-1 becomes inactive at the end of the pulse time.

When count value reaches to 000 ODO value, count value becomes equal to SET2 value and Output-2 becomes active. If Output-2 pulse time $P_{r o}-17$ is 000000 , then Output-2 does not change position until manual reset input is active. If Output-2 pulse time $\left[P_{r-}-17\right]$ is not 0 , Output-2 becomes inactive at the end of the pulse time.

When Output-2 becomes active, 1 is added to batch count value is (Batch count value can be observed by pressing SET1 button). When number of how many times Output-2 is active becomes equal to SET1 value, then Output-1 becomes active and Batch count value is reset automatically. If Output-1 pulse time Pro^{-15} is 000000 , then Output-1 does not change position until manual reset input is active. If Output-1 pulse time $P_{r o-15}$ is not 0 , then Output-1 becomes inactive at the end of the pulse time.

Time Out (Input Signal Reset Time)
(It is accessible only in FREQUENCYMETER / TACHOMETER function)
Actual count value is reset if no signal is applied to Ch-A input for a time which is greater than the value is set in this parameter.
It can be adjusted from 00000 to 000099

(1)
This parameter is visible if $\operatorname{Pro}-03$ measurement method selection parameter is 000000 . Only Ch-A input is performed in Frequencymeter/Tachometer functions

$\square-\square-\square \square$

Measurement Period
(It is accessible only in FREQUENCYMETER / TACHOMETER Function)

Number of pulses in Ch-Ainput is counted during this time
It can be adjusted from 00000 to to 00999

This parameter is visible if $\operatorname{Pro-03}$ measurement method selection parameter is ODODO 1. Only Ch-A input is performed in Frequencymeter/Tachometer functions

Output-1 Function
(It is accessible only in FREQUENCYMETER / TACHOMETER Function)
$\because \neg \neg \neg \cap \square$ Manual reset is applied.

Output -1 is latched

HZGZG 1 Non-latched with hysteresis output is selected.

Output-1 is non-latched

000002
Output-1 is an alarm output. For details, refer to Alarm Functions for Output-1 parameter Pro- |

Only Ch-A input is performed in Frequencymeter/Tachometer functions

$\square-1 \square$
 Output-2 Function
 (It is accessible only in FREQUENCYMETER / TACHOMETER Function)
 Manual reset is applied.

Output-2 is latched

Output-2 is non-latched

(I) Only Ch-A input is performed in Frequencymeter/Tachometer functions

$\square \rho \square-1$ Alarm Functions for Output-1
 (It is accessible only in FREQUENCYMETER / TACHOMETER Function)
 If Output-1 function parameter Pro -03 is selected 000002
 Alarm output, then Output-1 becomes active according to this parameter.

ЯИПИПИ High Alarm.
Output-1

Count Value

근ㄱ 1 Low Alarm.

Output-1

Count Value

듣․ Deviation High Alarm．

근ㄱ Deviation Low Alarm．

ㄱTㄴ4 Deviation Band Alarm．

（1）Only Ch－A input performs in Frequencymeter／Tachometer function．
\square ロロ－1口
Hysteresis for Output－1
（It is accessible in FREQUENCYMETER／TACHOMETER functions）
It defines hysteresis for Output－1．It is used if Output－1 is non－latched． It can be adjusted from 000000 to 050000

$\square \square \square-1 \square$ Output-1 Pulse Time

It determines how long Output-1 will be active.
It can be adjusted from 0000.00 to 0099.99 seconds.
If it is 0000.00 second, then it operates indefinitely.
For details, refer to the section where output functions $\operatorname{Pro}-D_{5}$ are defined

$\square-17$ Output-2 Pulse Time

It determines how long Output-2 will be active.
It can be adjusted from 0000.00 to 0099.99 seconds.
If it is 0000.00 second, then it operates indefinitely.
For details, refer to the section where output functions Pro- DE are defined

Start of the Controlling
(It is accessible only in FREQUENCYMETER/TACHOMETER functions)
Outputs are controlled according to this parameter

Direction of Counting
（It is accessible in functions except for FREQUENCYMETER／ TACHOMETER functions）

ПППППП Upcount．（ $0 \Rightarrow$ Preset ）
ユロロロП 1 Downcount．（Preset $\Rightarrow 0$ ）

（i）
If Input Types and Functions parameter Pro－0 is BOODOD or 00000 in COUNTER／＂TOTALIZER COUNTER＂functions，then direction of counting parameter Pro－19 can not be accessed．

Point Position for Display
（It is accessible in functions except for TIMER and CHRONOMETER functions）

НИПニПП No point
ㄱㄱㄱ 1 Between first and second digits
ㄴㄴㄱㄱ Between second and third digits

Between fourth and fifth digits 000000

$\square \square \square-\square \quad$ Saving Count Value（Power down back－up）
 （It is accessible in functions except for FREQUENCYMETER／ TACHOMETER functions）

$\because \cap \cap \square \cap \square$ Count value is saved to memory when power is disconnected and restored on power up．
GZGZП Count value is not saved to memory when power is disconnected．When power up DODOD is shown on the screen．

Pro-22

SET1 Operation Form Selection
(It is accessible only in COUNTER / "TOTALIZER COUNTER" Function)
 999998
 according to SET2 value. (SET1 = SET1 + SET2)
For example ;if operation with offset is selected, SET1 = 5000, SET2 $=10000$.
Output-1 becomes active or inactive according to
SET1 $=5000+10000=15000$ value

For example; If operation with offset is selected ;
If 6th digit of the SET1 is adjusted to "-", SET1 becomes negative (For details, refer to Section 7.3)
SET1 $=-05000 ;$ SET2 $=10000$
Output-1 becomes active or inactive according to SET1 $=-5000+10000=5000$ value

Pro-23
 Slave Address
 Device address for serial communication bus. It can be adjusted from 00000 to 000247

$\square \square \square-\square \square$ Modbus Protocol Type Selection

ㄱㄴㄱㄴ Modbus ASCII protocol is selected
GПППП 1 Modbus RTU protocol is selected

$\square \square \square-\square \square$ Communication Parity Selection

НПGZMG No parity
ㄱㄴㄱㄴ 1 Odd Parity
GTGZGI Even Parity
Pro－25 buasate
000000 1200 Baud Rate0000024800 Baud RateㄱZN․ 9600 Baud RateППППП4 19200 Baud Rate
$\square \square \square-\square$ Communication Stop Bit selection
00000 1 Stop Bit
000001 2 Stop Bits
Pro－28 Reset and Set protection（For accessing from front panle）
000000 There is no Reset and Set protectionbe reset by Reset button．Actual value can be reset only reset input is active
ாワワワワコ SET1 and SET2 can not be changed．
000003 Full protection ；Reset protection is active，also SET1 and SET2 can not be changed．
000004 SET1 can not be changed．
ЧПППП5 SET2 can not be changed．
Pro－29 Frequency／Cycle Coefficient
（It is accessible only in FREQUENCYMETER／TACHOMETER functions）
It can be adjusted from 00000 to 009999．Count value is multiplied with this parameter．
If it is 000001 multiplication is not performed．So number of pulses are displayed without having any changes．

Pro-30

Multiplication Coefficient
(It is accessible except for TIMER and CHRONOMETER functions)
It can be adjusted from 02000 i to 999999 . Changes in this parameter is evaluated when counting starts.
If it is 0 IODOD multiplication is not performed. So number of pulses are displayed without having any changes.

Pra-P5
Program Password
It is used for accessing to the program parameters. It can be adjusted from 000000 to 009993.
If it is 000000 , there is no password protection while accessing to the parameters.
When programming button is pressed, Prou will appear on the display.
If program password is not " 0 " while accessing to the program parameters;
1- If user does not enter the PSuurd value correctly ; operation screen will appear without entering to operator parameters.

2-When PSuurd in top display and 000000 in bottom display, if user presses ENTER button without entering password (for observing the parameters):
User can see all parameters except Program Password but device does not allow to do any changes with parameters.
(Please refer to Section 9. Failure Messages in EZM-9950 Programmable Timer \& Counter (2))

1 - Position of the DIP Switch is wrong. (DIP Switch determines the operation function of the device and it is under the top cover)
For details, refer to Section 2.8 "Selection of Operation Function and Input Type with DIP Switch".

2 - If the password is not 0, user can access to the parameters without entering the password and by pressing ENTER button.
User can see all parameters except for programming password parameter Pro-P5 but user can not do any changes in parameters. If password is entered for accessing to the parameters correctly, most significant digit of the parameter flashes. But if the password is not entered, flashing of the most significant digit is not realised.

By pressing ENTER button, user can see all parameters except for program password

For COUNTER / "TOTALIZER COUNTER" function

Multiplication Coefficient

3 - IfActual Value is flashing and counting is stopped; It appears if any of the count value is greater than the maximum count value.
(Total count value for Counter/"Totalizer Counter" Function - Batch count value for Batch Counter FUNCTION)
To remove this warning and reset the count value press RESET button.

4 - If actual value is flashing and counting is not performed;
It appears if any of the count value is less than the minimum count value.
(Total count value for Counter/"Totalizer Counter" Function - Batch count value for Batch Counter FUNCTION)
To remove this warning and reset the count value press RESET button.

Device Type	ogrammable Timer \& Counter
Housing \& Mounting	$: 96 \mathrm{~mm} \times 96 \mathrm{~mm} \times 87.5 \mathrm{~mm} 1 / 4$ DIN 43700 plastic housing for panel mounting. Panel cut-out is $92 \times 92 \mathrm{~mm}$
Protection Class	: NEMA 4X (IP65 at front, IP20 at rear).
Weight	: Approximately 0.34 Kg .
Environmental Ratings	: Standard, indoor at an altitude of less than 2000 meters with none condensing humidity
Storage / Operating Temperature: $-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C} / 0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	
Storage / Operating Humidity	: 90 \% max. (None condensing)
Installation	: Fixed installation
Over Voltage Category	: II
Pollution Degree	: II, office or workplace, none conductive pollution
Operating Conditions	: Continuous
Supply Voltage and Power	: $100-240 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz} .(-15 \% /+10 \%) 6 \mathrm{VA}$
	24 V ~ 50/60 Hz. (-15\% / +10\%) 6VA
	$24 \mathrm{~V}=-\mathrm{l}$ (-15\% / +10\%) 6W
Electrical Characteristics	
Of Digital Inputs	: Rated voltage : 16 VDC @ 5mA
	Maximum continuous permissible voltage : 30 VDC
	Logic 1 minimum level : 3 VDC
	Logic 0 maximum level : 2 VDC
Maximum Input Frequency	: For Counter / "Totalizer Counter" and Batch Counter ; If $\mathrm{Pro-D} \mid=0,1,2 ; 6000 \mathrm{~Hz}$
	If Pro-0 $=3,4 ; 4000 \mathrm{~Hz}$
	If $\mathrm{Pra-D}=5,6 ; 3500 \mathrm{~Hz}$
	If Pro- $=7 ; 2000 \mathrm{~Hz}$
	For Frequencymeter / Tachometer ; 10kHz
	Max 30 Hz (Pro-04 $\neq 000000$, debounce)
Optional Output Modules	:-EMO-900 Relay Output Module (5A@250V~)
	100.000 operation (Full Load)
	-EMO-910 SSR Driver Output
	Module(Max20mA@18V=-)
	-EMO-920 Digital (Transistor) Output Module
Standard Communication	
Module	: EMC-900 RS-232 Communication Module
Optional Communication	
Module	: EMC-910 RS-485 Communication Module
Communication Protocol	: MODBUS-RTU, MODBUS-ASCII
Process Display	: 14 mm Red 6 digit LED display
Set Display	: 9 mm Green 6 digit LED display
Led Indicators	: SV1 (Set1 value), SV2 (Set2 value), OP1 / 2 (Control or Alarm Output) LEDs
Approvals	UL Recognized Component(File Number: E 254103), GOST-R, (ϵ

